Pressure management and geomechanical behavior at industrial partner projects

Joshua White & Thomas Buscheck

Project Number: FWP-FEW0191-Task 4

Lawrence Livermore National Laboratory

0 10 km

Program Goal No. 4

 Develop Best Practice Manuals for monitoring, verification, accounting, and assessment; site screening, selection and initial characterization; public outreach; well management activities; and risk analysis and simulation.

Benefit Statement

- An understanding of hydro-mechanical interactions is essential for effective monitoring and management of reservoir performance.
- This project seeks to develop:
 - An open source toolkit to support dynamic well-test analysis using multi-rate / multiwell gauge data
 - Active pressure management strategies using pre-production and co-production of brine

Performance Period

May 2016 to April 2019

FY16-17 Task Status

- 1 Statoil data transfer & pre-processing
- 2 Active pressure management study
- ③ Pressure toolkit development

Complete									
25%									
25%									

Team

- Joshua White -- geomechanics and reservoir engineering
- Thomas Buscheck -- hydrogeology and reservoir engineering

The Snøhvit CO₂ Storage Project

[Spencer et al. 2008; Chiaramonte et al. 2014]

Snøhvit CO₂ Storage Project

Figure: N-S vertical cross section through stratigraphy

- 2008 to 2011: ~1 Mtpa injection into Tubåen Formation
- **2011**: Well re-completion
- 2011 to present: ~1 Mtpa into Stø Formation

Getting CO₂ into the Tubåen Fm. was harder than expected

Depositional environment controls pressure behavior

• CO₂ and pressure confined to narrow sand channels, with limited connectivity between channels

4D difference amplitude map, 2003-2009, lower perforation.

(Hansen et al. 2012)

Snøhvit experience highlights questions faced by all carbon storage projects:

1 How can operators identify (and understand) reservoir properties and structure as quickly as possible?

2 What mix of monitoring and characterization techniques provides the best information while still being cost effective?

3 How can operators forecast reservoir behavior to make informed and timely decisions?

What engineering solutions are available to maximize storage and manage integrity risks? Part 1. Active Reservoir Pressure Management

Active Reservoir Pressure Management

Tubåen brine pre-production case study

We have published an EES paper on Tubåen injection. We are working on a similar analysis of the Stø injection.

Energy & Environmental Science

PAPER

View Article Online View Journal

Cite this: DOI: 10.1039/c5ee03648h

Managing geologic CO₂ storage with pre-injection brine production: a strategy evaluated with a model of CO₂ injection at Snøhvit

Thomas A. Buscheck,*^a Joshua A. White,^a Susan A. Carroll,^a Jeffrey M. Bielicki^b and Roger D. Aines^a

Part 2. Pressure Analysis Toolkit

Complementary techniques are required to adequately monitor and understand subsurface behavior

Pressure measurements can provide "3D" data. They are just challenging to interpret.

• Falloff testing (and other welltests) commonly used to probe reservoir properties and structure away from the well.

Statoil falloff analysis shows clear indications of flow barriers

• Welltest model suggests flow barriers at 110, 110, and 3000m

Figure: Falloff analyses using permanent gauge (2009) and PLT data (2011).

(Hansen et al. 2012)

Falloff testing has proven value, but requires shutting in the well for significant periods

• **Motivating question:** Could we derive the same information from ongoing injection data, without shutting in for long periods?

Generalized superposition welltest method

- We use a superposition principle to transform a multirate injection into an equivalent single-rate test.
- Equivalent buildup/falloff curve can then be analyzed using standard welltest methods

Single rate: $p(t) = q \times p_C(t)$

Multi-rate: $p(t) = \overset{\circ}{\operatorname{O}}(q_{i+1} - q_i) \times p_C(t - t_i)$ i

Generalized superposition welltest method

If there are M pressure data points, these equations can be written as a $M \times N$ linear system,

$$A\vec{x} = \vec{p}$$
 with $A_{ij} = \sum_{n=0}^{n < i} (q_{n+1} - q_n) H_j(t_i - t_n)$

Automatic calibration to Snøhvit data (~5 seconds)

Tool can potentially be used in two modes:

1) Reservoir characterization mode

- Calibrate to gauge data, extract equivalent falloff test
- Apply standard welltest analysis techniques to results

2) Pressure forecasting mode

- Calibrate to gauge data, project forward in time
- Quickly explore alternative injection scenarios

Accomplishments to date

We have demonstrated the utility of several techniques

- 1 Pre-production of brine as an alternative to co-production in an active pressure management scheme.
- 2 Dynamic welltest analysis, in which ongoing injection data is used to probe reservoir properties without shutting in the well.

Future plans

 Implementing pressure analysis algorithms in an open-source toolkit, freely available to interested parties.

- Also including multi-well analyses, to look at pressure & poroelastic interactions between wells.
- 2 Testing the effectivness of pressure management in "open" reservoirs where fluid recharge may impact drawdown effectiveness.

Synergistic Opportunities

We are always looking for opportunities to partner with industrial operations.

Goal is always to provide a two-way benefit:

1 We validate our tools on real field data, and ensure they are relevant for highpriority operational decisions.

(2) We provide back novel analyses and insights useful for an operator.

Acknowledgements

 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Funding was provided by the DOE Office of Fossil Energy, Carbon Sequestration Program and by Statoil SA.

Contact

Joshua A. White

Lawrence Livermore National Laboratory

jawhite@llnl.gov

Appendix: Program Management

Org Chart

Project Timeline for FEW0191

	Milestone Description*	Project Duration Start : Oct 1, 2014							I	E nd: Sept 30, 2017				Planned	Planned	Actual	Actual	Comment (notes, explanation of deviation
Task		Project Year (PY) 1					P	Y 2			P	Y 3		Start	End	Start	End	from plan)
		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Date	Date	Date	Date	nom plan)
	Calibrate Reactive Transport																	
1.1	Model						x							1-Oct-14	30-Mar-15			
	Calibrate NMR Permeability																	
1.2	Estimates						x							1-Oct-14	30-Mar-15			
	Scale Reactive Transport																	
	Simulations from the core to																	
1.3	reservoir scale										x			1-Jul-15	28-Feb-17			
	Write topical report on CO2																	
	storage potential in carbonate																	
1.4	rocks												x	1-Dec-16	30-Sep-17			
	Algorithm development and																	
2.1	testing				х									1-Oct-14	30-Sep-15			
	Array design and monitoring																	
2.2	recommendations								х					1-Oct-15	30-Sep-16			
	Toolset usability and																	
2.3	deployment												x	1-Oct-16	30-Sep-17			
	Analysis of monitoring and																	
	characterization data available																	
	from the In Salah Carbon																	
3.1	Sequestration Project				х									1-Dec-14	30-Sep-15			
3.2	Wellbore model development				х									1-Oct-14	30-Sep-15			
	Analysis of the full-scale																	
	wellbore integrity																	
3.3	experiments										x			1-Mar-14	28-Feb-17			
	Refining simulation tools for																	
	sharing with industrial																	
3.4	partners												x	1-Oct-16	30-Sep-17			
	Engage with industrial																	Future tasks pending discussions with
4.1	partnerships		x											1-Oct-14	28-Feb-15			industrial partners
	Develop work scope with																	
4.2	industrial partners				x									1-Mar-14	30-Sep-15			

* No fewer than two (2) milestones shall be identified per calendar year per task

Bibliography

- T.A. Buscheck, J.A. White, S.A. Carroll, J.M. Bielicki, and R.D. Aines. Managing geologic CO₂ storage with pre-injection brine production: A strategy evaluated with a model of CO₂ injection at Snøhvit. *Energy & Environmental Science*. DOI: 10.1039/C5EE03648H, 2016.
- T.A. Buscheck, J.M. Bielicki, J.A. White, Y. Sun, Y. Hao, W.L Bourcier, S.A. Carroll, and R.D. Aines. Pre-injection brine production in CO₂ storage reservoirs: An approach to augment the development, operation, and performance of CCS while generating water. *Int. J. Greenhouse Gas Control*, 2016. DOI: http://dx.doi.org/10.1016/j.ijggc.2016.04.018